2013年 3月 3日、Nature誌にまた筋萎縮性側索硬化症 (ALS) での遺伝子変異が報告されました。次から次へと出てきて、何が何だか分からなくなりますね (^^;
Hong Joo Kim, Nam Chul Kim, Yong-Dong Wang, Emily A. Scarborough, Jennifer Moore, Zamia Diaz, Kyle S. MacLea, Brian Freibaum, Songqing Li, Amandine Molliex, Anderson P. Kanagaraj, Robert Carter, Kevin B. Boylan, Aleksandra M. Wojtas, Rosa Rademakers, Jack L. Pinkus, Steven A. Greenberg, John Q. Trojanowski, Bryan J. Traynor, Bradley N. Smith, Simon Topp, Athina-Soragia Gkazi, Jack Miller, Christopher E. Shaw, Michael Kottlors et al.
Nature (2013) doi:10.1038/nature11922
Received 05 January 2012 Accepted 17 January 2013 Published online 03 March 2013
Abstract
Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a ‘steric zipper’ motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.
骨 Pagetと前頭側頭型認知症を伴った封入体筋炎 (inclusion body myopathy associated with Paget’s disease of the bone and fronto-temporal dementia; IBMPFD) とその原因遺伝子 VCPについて、2010年12月のブログ記事で紹介したことがありました。VCPは ALSの原因遺伝子でもあります。ちなみに、IBMPFD/ALSは広い表現型や特徴的な病理を反映して、最近では multisystem proteinopathy (MSP) と呼ばれるようです。
著者らは、まず VCP関連 MSPと同じような臨床像を呈する家系 (family 1) を調べました。この家系の患者は VCP変異はなく、エクソーム配列解析および連鎖解析により、hnRNPA2B1に変異 (c.869/905A>T, p.D290V/D302V) が見つかりました。hnRNPA2B1は RNA結合タンパクで、A2, B1という isoformがあります。hnRNPA2の方がアミノ末端の 12アミノ酸短く、isoformの存在のせいで、変異部位は 2ヶ所表記となっています。このアミノ酸は進化的に保存されています。
さらに過去に VCP陰性-MSPとして報告された家系 (family 2) を遺伝子解析しました。その結果、hnRNPA1に変異 (c785/941A>T, p.D262V/D314V) が見つかりました。
次に、212名の家族性 ALS患者で hnRNPA2B1と hnRNPA1変異を調べると、1例で hnRNPA1変異 (c.784/940G>A: p.D262N/D314N) が見つかりました。
これらの変異は、3つの意味で著者らの興味を引きました。
①hnRNPA2B1と hnRNPA1が直接 TDP-43と相互作用し、RNA代謝を協調して制御すること
②VCP関連変性を抑制する因子として TDP-43, hnRNPA2B1と hnRNPA1のハエホモログが同定されたこと
③hnRNPA2B1が過去に神経変性との関係を指摘されていること (hnRNPA2B1は脆弱X関連振戦/運動失調症候群 (fragile-X-associated tremor ataxia syndrome; FXTAS) の RNA foci中にあり、riboCGG repeatと結合する)
さらに、著者らは、筋病理の分析を行いました。正常では、hnRNPA2B1や hnRNPA1は核に存在しますが、family 1の患者では、hnRNPA2B1が核から消失し、約 10%の筋線維で細胞質封入体に凝集しているのがわかりました。この患者では、VCP関連封入体筋炎および孤発性封入体筋炎がそうであるように、TDP-43病理も見られました。また、hnRNPA2B1病理は、VCP関連封入体筋炎および孤発性封入体筋炎でも見られました。
family 2の患者では、約 10%の筋線維において、hnRNPA1が核から消失し、約 10%の筋線維で hnRNPA1の細胞質封入体が見られました。hnRNPA2B1病理、TDP-43病理も同時に見られました。さらに、hnRNPA1病理は VCP関連封入体筋炎や孤発性封入体筋炎でも見られました。これらの症例では FUS/TLS病理は見られませんでした。二重染色では、TDP-43病理を伴った筋線維では通常 hnRNPA2B1病理や hnRNPA1病理を伴っており、部分的には共局在していました。一部、ユビキチンや p62も陽性でした。
hnRNPA2B1と hnRNPA1はいずれも C末端に glycine-richドメインを持ち、この部位は活性の保持や TDP-43との相互作用を介在するのに必須です。これらのドメインは、蛋白質の三次構造として折りたたまれずに存在すると予想されており、また酵母のプリオン・ドメインとアミノ酸組成が似通っています。このようなドメインは prion-like domain (PrLD) と呼ばれ、TDP-43や FUSを含む多くの hnRNPに存在します。疾患の原因となる変異は、PrLDの中心近くに存在し、プリオン様の振る舞いを強めるのではないかと考えられます。さらに、ZipperDBで調べたところ、hnRNPA2B1と hnRNPA1の PrLDにおける変異は、アミロイド線維の背骨構造を作る “steric zippers” という自己相補的な β-strandをより形成しやすくすることが予想されました。
そこで、著者らは hnRNPA2と hnRNPA1が線維形成しやすいのかどうか、またそれが疾患の原因となる変異で促進されるかを調べました。まず、 hnRNPA2B1 D290V, hnRNPA2 D262Vをそれぞれ含む 6アミノ酸ペプチドを合成したところ、容易に線維形成しました。次に GSTタグをつけて沈降分析と電子顕微鏡で評価したところ、hnRNPA2B1, hnRNPA2は変異を導入しなくても、凝集する傾向があることがわかりました。その律速段階は核生成のようでした。また、hnRNPA2B1のシードは hnRNPA2B1の凝集は起こすものの hnRNPA1の凝集を起こさず、逆もまたそうであることがわかりました。疾患変異を導入すると、hnRNPA2B1, hnRNPA1の線維形成は著明に促進しました。また、変異 hnRNPA2B1は野生型 hnRNPA2B1の、変異 hnRNPA1は野生型 hnRNPA1の線維形成をも促進しました。一方で、これらが TDP-43のような PrLDを持った他の RNA結合タンパクの凝集を促進することはありませんでした。”steric zipper” モチーフの 6アミノ酸を欠失させると、このような凝集は起きなくなりました。そのため、PrLDの中央に位置する “steric zipper”モチーフが線維形成に重要であると言えます。
さらに、酵母でも調べてみました。酵母プリオン蛋白 Sup35の核生成ドメインを野生型ないし変異 hnRNPA2B1の PrLDに置換した場合でもプリオン形成は行われ、変異 hnRNPA2B1で著明に促進されました。また全長 hnRNPA1および hnRNPA2は細胞質内凝集体を形成し、酵母に対して毒性を持ちました。
hnRNPA2B1や hnRNPA1の PrLDは、RNA顆粒を作るのに必須である (TDP-43や FUSを含む) hnRNPの “low-complexity sequence (LC配列)” に相当します。ストレス顆粒 (stress granule) は、翻訳複合体の抑制によって形成される細胞質リボ核蛋白です。TDP-43や FUSはストレス顆粒に誘導され、疾患変異によりそれが促進されます。著書らは培養細胞を用いた実験で、arsenite処理により、hnRNPA2も stress顆粒に誘導され、疾患変異があるとそれがより速やかに行われることを見つけました。患者由来の線維芽細胞では、変異 hnRNPA2が TDP-43, VCP及び eIF4G (翻訳のため mRNAをリボソームに運ぶ役割と関係がある蛋白質) 陽性のストレス顆粒内に凝集していました。
著者らは更に、ショウジョウバエの間接飛翔筋に hnRNPA2を発現させました。野生型 hnRNPA2を発現させると、いくつかの筋の吻側に軽度の変性がみられましたが、D29V変異を導入すると全ての筋で強い変性が生じました。また、PrLDを削除した Δ287-292変異を持つ hnRNPA2を過剰発現した場合、筋肉の異常はみられませんでした。免疫組織学的検討では、野生型 hnRNPA2および hnRNPA2 Δ287-292では hnRNPA2は核に存在しましたが、hnRNPA2 D29Vでは細胞質封入体への凝集がみられました。蛋白質の溶解度をしらべたところ、野生型 hnRNPA2と hnRNPA2 Δ287-292は可溶性画分に存在しましたが、hnRNPA2 D290Vは不溶性画分に存在しました。これらの結果から、hnRNPA2を発現したショウジョウバエの筋変性の程度は、細胞内封入体と hnRNPA2の溶解度に関連していることがわかりました。最後に、マウスの前脛骨筋に hnRNPA2を発現させたところ、野生型 hnRNPA2は核に存在するのに対し、 hnRNPA2 D290Vは核から排除され、MSP患者のように細胞質封入体に存在することを確認しました。
ALS、アルツハイマー病、パーキンソン病などいくつかの神経変性疾患では、seed 仮説という学説が議論されています。これは、seedという 種のような物ができて、それを元に蛋白質が重合し、安定化して排除されなくなってしまうことで細胞に傷害を及ぼすというものです。seedは伝播することもあります。
今回の論文では、hnRNPA2B1および hnRNPA1が細胞質内で seed仮説の原因蛋白質によくみられるように線維形成をすること (これは疾患変異で促進される)、それがプリオン様ドメインによること、いくつかの ALS関連蛋白質が同じような振る舞い (RNA顆粒を形成する) をしていることが明らかになりました。Natureに掲載されるのに相応しい、画期的な論文と言えます。
ALSの原因蛋白質はいくつもありますが、hnRNPA2B1, hnRNPA1, TDP-43, FUSなどのように RNA顆粒を形成する蛋白質は一つの系として纏められる時代がくるかもしれません。また、線維形成を引き起こすドメインに対するアプローチも色々考えられそうです。今後、RNA顆粒を形成する蛋白質の研究は、競争が激化するでしょう。個人的には、こうした RNA顆粒を形成する蛋白質が、C9orf72と関係あるのかないのかも興味をそそるところです。
最後に、RNA顆粒形成について Cell誌に掲載された論文が日本語で読めますので、紹介しておきます。hnRNPや FUSが登場します。